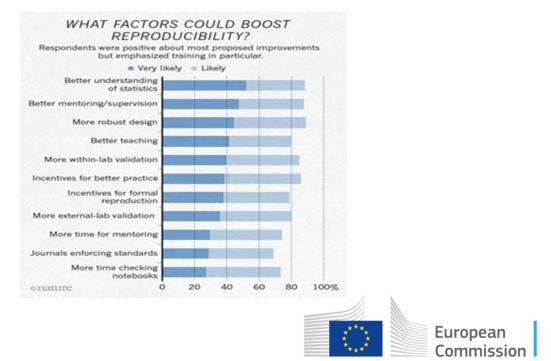


Improving Science, Advancing Animal Welfare :Towards better In Vitro Practices Glorieuxpark, Eindhoven, NL Utrecht University Campus, The Netherlands 1st of June, 2018

In vitro method development safeguarding scientific integrity and quality

Trusted by decision makers Used by industry


Is there a reproducibility crisis in science?

More than 70% of researchers have tried and failed to reproduce another scientist's experiments

More than half have failed to reproduce their own experiments

Nature 533, 452-454 (2016)

is a response to a more general "crisis in reproducibility" in scientific data generation

GIVIMP

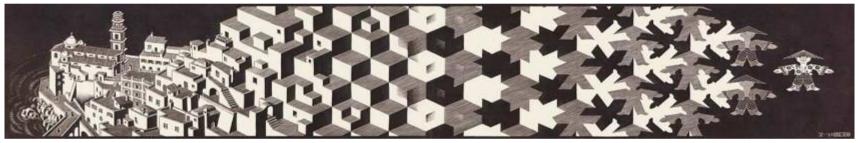
FOR THE DEVELOPMENT AND IMPLEMENTATION OF *IN VITRO* METHODS FOR REGULATORY USE IN HUMAN SAFETY ASSESSMENT

4

10 Headings of GIVIMP Defined at the GIVIMP Guidance meeting

We brought together many experts from different sectors and scientific fields to contribute (regulatory, academic, industry)

EU-NETVAL


EUROPEAN NETWORK OF 37 HIGHLY QUALIFIED GOOD LABORATORY PRACTICE FACILITIES (EU-NETVAL)

Metamorphosis by Escher

 \checkmark Well, ...nothing this comprehensive exists.

 $\checkmark\,$ Bits and pieces exist all over the place but have never been

integrated in a holistic way.

European Commission

GIVIMP

Actors of the Italian Commedia dell'Arte by Jean-Antoine Watteau

e Glider by Leonardo Da Vinci

The GIVIMP GD is divided into 10 sections of this: 1. Roles and responsituties 2. Quality complete ations places of quality 3. Facilities 4. Other atual that erial in Greagen te Vels 4. Other atual that erial in Greagen te Vels 5. Facilities 6. A nest and after ence of the tems 5. Section of the method 9. Aporting of results 10. Storage and retention of records and materials

7

Roles and responsibilities

This guidance document targets all players involved in the process:

- In vitro method developers
- Test system (cells, tissues) providers
- Validation bodies
- Producers of equipment, materials and reagents

- Receiving authorities (EMA, ECHA, EFSA, EPA, FDA, MHLW, MAFF)
- Monitoring authorities (GLP)

Quality considerations

Discusses quality assurance versus quality control, quality risk assessment and details quality control requirements for development and implementation of in vitro methods, **the types of documentation needed** and quality considerations regarding the integrity of the data.

Test system providers

In vitro test systems are mainly biological systems, quite often consisting of tissues or cell lines.

Test systems can be developed in-house (i.e. by the *in vitro* method developer), acquired from other laboratories or purchased from a cell culture bank, either academic or commercial.

The responsibility for the quality and documentation of the test system rests entirely with the test facility, however, the role of the supplier is crucial in aiding the facility meet these quality requirements, e.g. test systems characterisation requirements can often be directly fulfilled by information from the supplier.

Test system providers

It is difficult, if not impossible, to identify cell lines from different origins and ensure that they are not cross-contaminated, misidentified or mixed-up, based solely on morphology and/or culture characteristics.

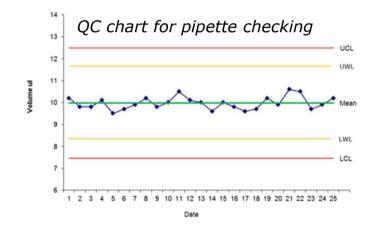
Authentication techniques are now routinely used both for human and non-human cell lines (5)

Infection or contamination of a cell line with an adventitious virus or mycoplasma may significantly change the characteristics of the cells but again such contamination may not be visibly evident.

Test system providers

The test system provider should therefore provide documentation the cell line's authenticity including verification of its identity and proof to be free of cross-contamination by other cell lines and/or contamination caused by bacteria, yeast or fungi, mycoplasma.

Additional information on the origin and culture history of the cell line, ideally including its transfer among laboratories and repositories, its manipulation (physicochemical or genetic), and details on the types of tests carried out for the detection and (if applicable) elimination of contamination should be made available, so as to provide complete tracking of the cell line provenance.


Test system providers

In some cases, e.g., cell lines established many years ago may lack some aspects of their provenance and their origin may be unknown. It is therefore recommended to confirm that the cells in current use are assessed against a previously authenticated stock (where available), either in a cell bank or in the laboratory of the originator.

Quality considerations

Applicability of integrity checks on cell cultures

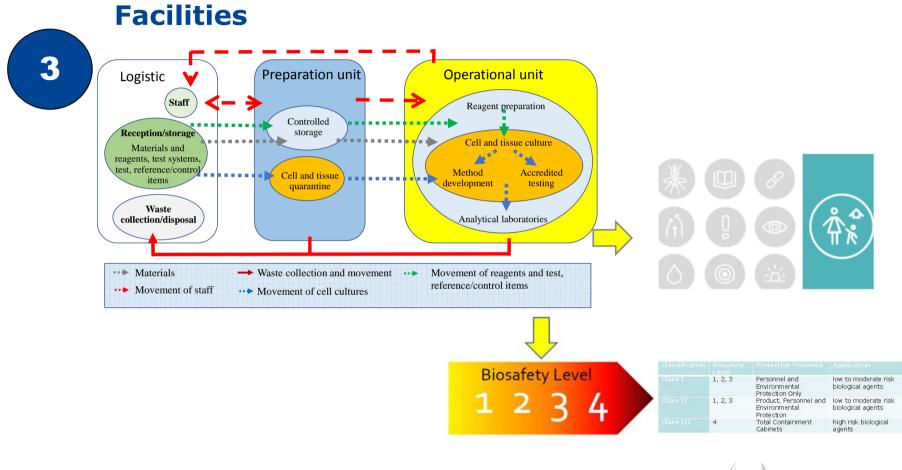
Attributes	Original Source	Early Stocks	Cell Banks	Routine Cultures
Morphology	1	1	~	~
Viability	~	1	~	√ ²
Identity	~	~	~	
Doubling time ^b	1	>	~	~
Mycoplasma	~	~	~	1
Viruses	🗸 (donor only)		🗸 (master bank only)	
Bacteria and Fungi			~	√ °
Function/phenotype		1	~	√d
Genetic stability			~	√°
Absence of reprogramming vectors (iPSC ^f lines)		~	~	

European Commission

Facilities

Proper facility design and management to ensure integrity of test systems and *in vitro* methods and to ensure the production of good scientific and quality results in a safe and efficient manner.

- Safety, risk assessment and management (risk groups & biosafety level & biological safety cabinets)
- Facility design
- Containment
- Level of separation to avoid cross-contamination
- Air handling, water supply, environmental control, heating and cooling
- Quarantine for new test systems


Apparatus, material and reagents

- Apparatus requirements (including examples of currently available more advanced instrumentation).
- Requirements for material and reagents. (e.g. use of serum, alternatives to use of animal sourced serum, antibiotics, basal & special media, certificate of analysis, stability and traceability).

Δ

Facilities

Classification of laminar flow biological safety cabinet

Classification	Biosafety Level	Protection Provided	Application
Class I	1, 2, 3	PersonnelandEnvironmentalProtectionOnly	low to moderate risk biological agents
Class II	1, 2, 3	Product, Personnel and Environmental Protection	low to moderate risk biological agents
Class III	4	Total Containment Cabinets	high risk biological agents

Apparatus, material and reagents

Routine cell and tissue culture according to GCCP should not require the use of antibiotics as it can never be relied on as a substitute for effective aseptic techniques. However, its use is still widespread e.g., OECD TG 432 due to established routine procedures in many laboratories.

Antibiotics are agents that may arrest or disrupt fundamental aspects of cell biology, and, while they are effective against prokaryotic cells (i.e. bacteria), they are also capable of causing toxic effects in animal cells.

Apparatus, material and reagents

The use of serum has been discouraged in recent years due to the undefined nature of the medium, batch variability that may contribute to experimental variability and lack of reproducible data, and potential limitation in consistency and availability of supply.

Moreover, in vitro methods, including components, are often developed for legislative or ethical reasons to replace animal methods.

Consensus Report

Fetal Bovine Serum (FBS): Past – Present – Future

Jan van der Valk¹, Karen Bieback², Christiane Buta³, Brett Cochrane⁴, Wilhelm G. Dirks⁵, Jianan Fu⁶, James J. Hickman⁷, Christiane Hohensee⁸, Roman Kolar⁹, Manfred Liebsch¹⁰, Francesca Pistollato¹¹, Markus Schulz¹², Daniel Thieme¹³, Tilo Weber⁹, Joachim Wiest¹⁴, Stefan Winkler¹⁵ and Gerhard Gstraunthaler¹⁶

<u>https://fcs-free.org/</u>

18

Good Cell Culture Practice – logistics related cell and tissue sourcing, cryostorage, handling, maintenance, identification, containment, authentication and characterisation of the test system (e.g. cell lines, stem cells, primary cells, engineered tissues, etc.) Already at the development stage.

Test and reference/control items

- Test item characterisation, solubility and handling.
- Test item interferences with test system and *in vitro* method.
- Biokinetics, method design considerations during development to ensure test item compatibility and correct and reliable exposure.
- Definition of reference, control items and proficiency chemicals for *in vitro* methods.

ommission

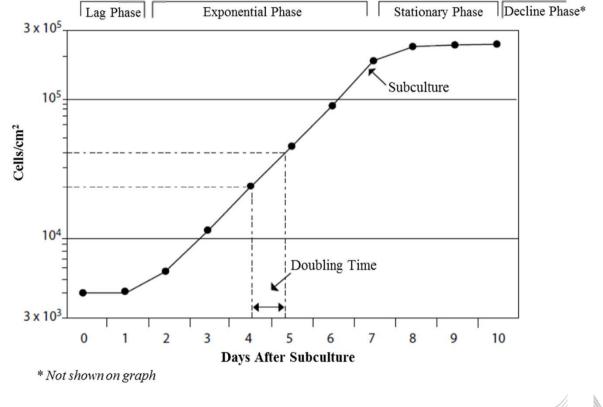
ATLA 33, 261–287, 2005

REFERENCE 02 from EURL ECVAM

Guidance on Good Cell Culture Practice

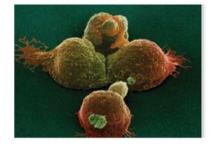
A Report of the Second ECVAM Task Force on Good Cell Culture Practice

Sandra Coecke,¹ Michael Balls,² Gerard Bowe,¹ John Davis,³ Gerhard Gstraunthaler,⁴ Thomas Hartung,¹ Robert Hay,⁵ Otto-Wilhelm Merten,⁶ Anna Price,¹ Leonard Schechtman,⁷ Glyn Stacey⁸ and William Stokes⁹



Mycoplasma detection methods, their sensitivity, advantages and disadvantages

Method	Sensitivity	Advantages	Disadvantages
Direct DNA stain (e.g., Hoechst33258)	Low	Rapid, cheap	Can be difficult to interpret
Indirect DNA stain (e.g., Hoechst 33258) with indicatorcells (e.g., 3T3)	High	Easy to interpret because contamination amplified	Indirect and thus more time-consuming
Broth and agar culture	High	Sensitive	Slow and may require expert interpretation
PCR	High	Rapid	Requiresoptimization
Nested PCR	High	Rapid	More sensitive than direct PCR, but more likely to give false positives
ELISA	Moderate	Rapid	Limited range of species detected
Autoradiography	Moderate	Rapid	Can be difficult to interpret if contaminationis at low level
Immunostaining	Moderate	Rapid	Can be difficult to interpret if contaminationis at low level


Growth curve for cells grown in culture

5

Nature 465, 537 (2010)

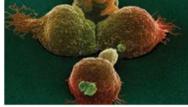
Table 1: Cell culture collections (banks)

Cell culture collections	Country	Web site
American Type Culture Collection (ATCC)	USA	http://www.atcc.org
CellBank Australia	Australia	www.cellbankaustralia.com
Coriell Cell Repository	USA	http://locus.umdnj.edu/ccr
Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ)	Germany	http://www.dsmz.de
European Collection of Animal Cell Cultures (ECACC)	UK	http://www.camr.org.uk
Japanese Collection of Research Bioresources (JCRB)	Japan	http://cellbank.nihs.go.jp
RIKEN Gene Bank	Japan	http://www.rtc.riken.go.jp
UK Stem Cell Bank (UKSCB)	UK	http://www.nibsc.org/ukstemcellbank

8012-8017 | PNAS | July 3, 2001 | vol. 98 | no. 14

www.pnas.org/cgi/doi/10.1073/pnas.121616198

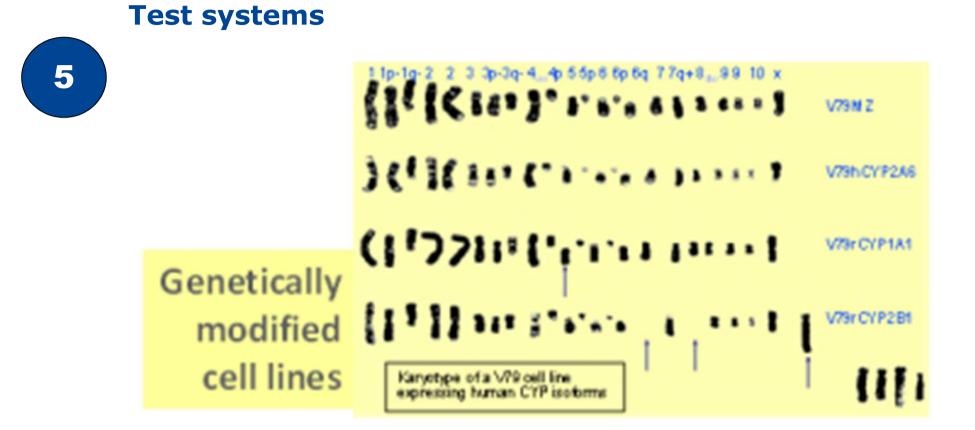
n


Short tandem repeat profiling provides an international reference standard for human cell lines

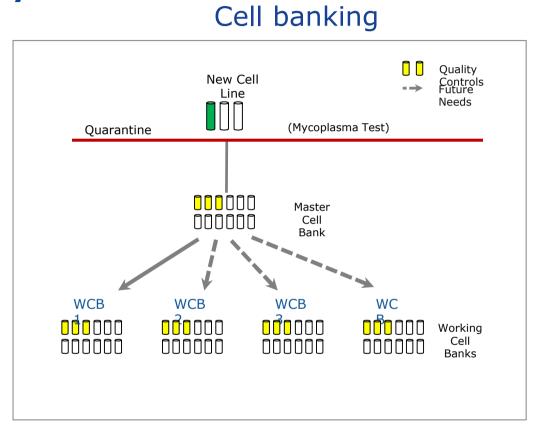
John R. Masters^{a,b}, Jim A. Thomson^c, Bernadette Daly-Burns^a, Yvonne A. Reid^d, Wilhelm G. Dirks^e, Phil Packer^f, Lorraine H. Toji^g, Tadao Ohno^h, Hideyuki Tanabeⁱ, Colin F. Arlettⁱ, Lloyd R. Kelland^k, Maureen Harrisonⁱ, Arvind Virmani^m, Timothy H. Ward^o, Karen L. Ayres^o, and Paul G. Debenham^c

*Institute of Urology, University College London, 3rd Floor Research Laboratories, 67 Riding House Street, London W1W 7EY, United Kingdom; "LGC, Queens Road, Teddington, Middlesex TW11 0LY, United Kingdom; "American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209; "DSMZ German Collection of Cell Cultures, Mascheroder Weg 1b, 38124 Braunschweig, Germany; "European Collection of Animal Cell Cultures, Centre for Applied Microbiology and Research, Salisbury, Wiltshire SP4 0JG, United Kingdom; "Coriell Institute for Medical Research, 401 Haddon Avenue, Camden, NJ 08103; "The Institute of Physical and Chemical Research (Japan) (RIKEN) Cell Bank, Koyadai 3-1-1, Tsukuba Science City, 305-0074, Japan; 'Japanese Collection of Research Bioresources Cell Bank, National Institute of Health Sciences, 1-18-1 Kami-Yoga, Setagaya-ku, Tokyo 158-8501, Japan; 'MRC Cell Mutation Unit, University of Sussex, Falmer, Brighton BN 19 RR, United Kingdom; 'Imperial Cancer Research Trapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 SNG, United Kingdom; 'Imperial Cancer Research, University of Texas Southwestern Medical Center, 6000 Harry "Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry "Hines Boulevard, Dallas, TX 7523-5593; "Department of Trug Development, Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 48X, United Kingdom; and "Opepartment of Applied Statistics, University of Reading, P.O. Box 240, Earley Gate, Reading RG6 6FN, University of Sussis, Salme, P.O. Box 240, Earley Gate, Reading RG6 6FN, United Kingdom

Edited by Stanley M. Gartler, University of Washington, Seattle, WA, and approved April 16, 2001 (received for review December 22, 2000)


Nature 465, 537 (2010)

Current status of SNP, STR, and DNA barcode technologies as standard methods for assessing the identity of cell lines from different species (Almeida *et al.*, 2016)

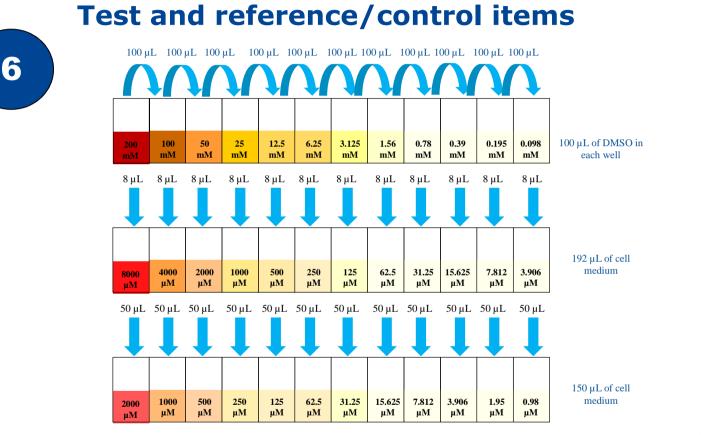

Species	Assays	Consensus Standard Method	Commercially Available Kit	Commercial Service	Comparative Data
Human	STR	ASN-0002	Yes	Yes	ATCC, DSMZ, JCRB, NCBI**
	SNP	No	Yes	Yes	(Liang-Chu <i>et al.</i> , 2015), (Yu <i>et al.</i> , 2015), NCBI
Mouse	STR*	No	No	Yes	Unpublished
	SNP	No	Yes	Yes	(Didion <i>et al.</i> , 2014)
African green monkey	STR*	No	No	No	None
Chinese hamster ovary	STR*	No	No	No	None
Rat	STR*	No	No	No	None
Species-level identification	CO1 DNA barcode	ASN-0003	Yes	Yes	Barcode of Life Data System, NCBI**
	Species- specific primers	No	No	Yes	None needed

European Commission

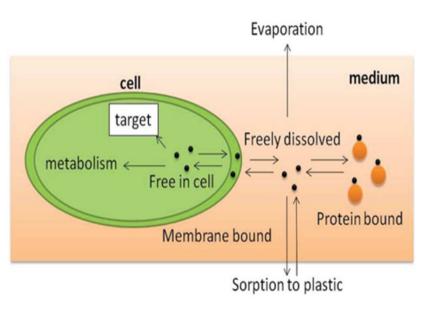
Test and reference/control items

Common factors affecting solubility

Factor	Affect	
Temperature	In most cases solubility increases with temperature, with the exception of gases.	
Polarity	In most cases, similar polarities of the solute and solvent increases solubility, e.g., polar solutes do not dissolve in non-polar solvents	
Molecular size	As a general rule, excluding other factors, larger particles are generally less soluble	
Agitation	Increases the speed of dissolving, i.e. dissolution	
Ultrasonification	Increases the speed of dissolving, i.e. dissolution	
рН	May affect the solubility of the solute	
Pressure	Only affects the solubility of gases	



Test and reference/control items


Comparison between solubility determination methods

Method	Limitations	Specificity	Cut off	Rapidity
Nephelometry (Light scatter)	Sticky precipitatesImpurities	Low	No	High
UV/VIS 1 (Absorbance)	 Compound must have chromophore Sticky precipitates Impurities 	Low	<500 nm	High
UV/VIS 1* (Filtration + Absorbance)	 Compound must have chromophore Sticky precipitates Impurities Loss due to filter absorption 	Medium	<250 nm	Medium
HPLC-UV*^	Sticky precipitates	High	No	Low
LC-MS*^	Sticky precipitates	High	No	Low
* Requires Calibration	^ High Cost			

Test and reference/control items

Representation of some processes that can cause the final target concentration to be different than the nominal concentration in an in vitro test (Kramer et al., 2012)

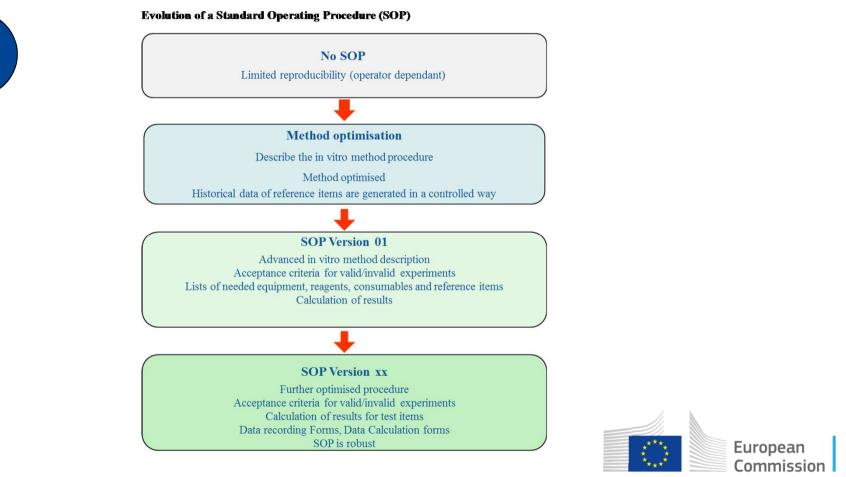
6

Standard operating procedures (SOPs)

Correct setup of *in vitro* methods for routine testing including requirements for clear and concise SOPs.

Performance of the method

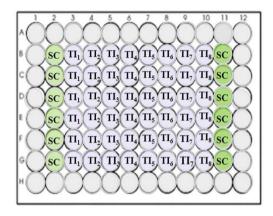
In vitro method design in the developmental stage: statistical methods for design of experiment; plate layout; data analysis; data-intensive *in vitro* methods; acceptance criteria; dynamic range/range of application; signal intensity; signal variability and plate uniformity assessment; reliability of endpoint calculations; accuracy, reliability and uncertainty.



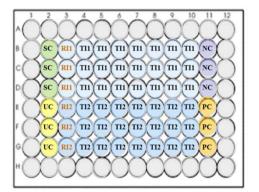
Performance of the method

Performance of the method

Acceptance criteria 8.1 8.2 **Experimental design** 8.2.1 Plate layout 8.2.2 Data analysis 8.2.3 Outlier detection and removal 8.2.4 Non-monotonic dose and U-shaped curves 8.3 In-house validation of the measurement endpoint(s) 8.3.1 Detection Limits and Cut-off values 8.3.2 Linearity and dynamic range 8.3.3 Accuracy and precision 8.3.4 Sensitivity and specificity 8.3.5 Repeatability **Proficiency chemicals** 8.4 Data-intensive in vitro methods 8.5


Acceptance criteria

- Acceptance criteria should primarily be established based on information from historical data.
 - Historical data should be collected using the unchanged method, unless it can be shown that any changes have not affected the values.
 - ✓ Data should only be rejected when there is a clear, valid and scientifically justified reason to do so, and the reasons for rejecting said data should be clearly and accurately documented.
 - Can be then supplemented by data from validation studies, or from relevant bibliographic data including guidance documents.
 - ✓ These criteria should be developed and detailed in the *in vitro* method SOP(s).
- Criteria should be defined for the test system (e.g., passage number, growth curve, cell recovery) and test system performance (e.g., positive, negative, and vehicle controls where applicable).
- ✓ Acceptance criteria should be set for the analytical endpoint determination (e.g., linearity, accuracy, range) and also include data analysis (e.g., line fitting).



Experimental Design

Experimental design is a way to carefully plan experiments in advance so that your results are both objective and valid.

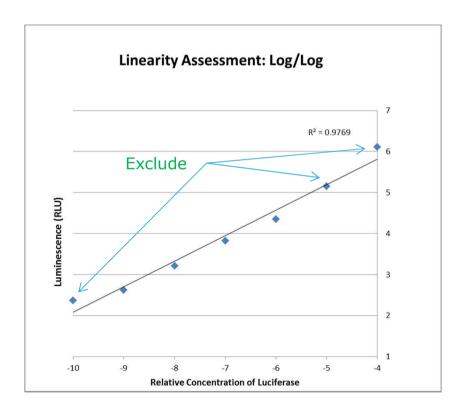
- SC Solvent (Vehicle) Control
- $$\label{eq:tilde} \begin{split} \textbf{TI} &- \textbf{Test Items at eight concentrations} \\ & (\textbf{TI}_1 = \textit{lowest}, \, \textbf{TI}_8 = \textit{highest}) \end{split}$$

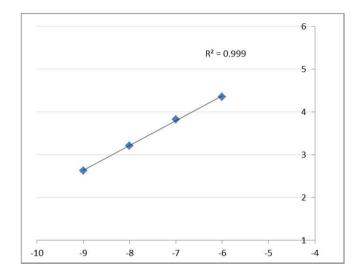
PC - Positive Control RI - Reference Item NC - Negative Control UC - Untreated Control SC – Solvent (Vehicle) Control TI - Test Item

A **factorial experimental design** is used to investigate the effect of two or more independent variables on one dependent variable.

In-house validation of the measurement endpoint(s)

Example: Transactivation assay for the detection of compounds with (anti)androgenic potential using AR-CALUX[®] cells


• Determine the linear range in relative light units (RLU). Performed with recombinant luciferase (14.37 mg/ml)


Relative luciferase concentration	
10-10	
10-9	
10-8	
10-7	
10-6	
10 ⁻⁵	
10-4	
10-3	

Prepare a calibration curve using the recombinant luciferase.

Linearity

• Acceptable linear range 10⁻⁹ to 10⁻⁶ relative luciferase concentration corresponds to **4500 to 240,000 RLU**

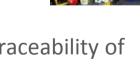
Range

Reference item standard curve	
$1 \times 10^{-4} \mathrm{M}$	
$1 \times 10^{-5} \mathrm{M}$	
$3 \times 10^{-6} \mathrm{M}$	Determined Linear Range: 4500 to 240,000 RLU
$1 \times 10^{-6} \mathrm{M}$	
$3 \times 10^{-7} \mathrm{M}$	
$1 \times 10^{-7} \mathrm{M}$	
$3 \times 10^{-8} \text{ M}$	
1×10^{-8} M	

Reference item DHT for the agonist AR-CALUX bioassay - range defined in the SOP

Reporting of results

Guidance on adequate publishing and reporting of *in vitro* methods, studies and results, including exceptions and deviations. Data reporting for regulatory purposes.



Storage and retention of records and materials

Data integrity, retention and archiving of key records and materials (retrieval, back-up and restore).

Adequate document and record management of processes and the traceability of origin of materials and key decisions.

Is a response to a more general "crisis in reproducibility" in scientific data generation

Accepted by all 35 OECD member countries on the 25th of April 2018 at 18.45. Now it is send to the Joint Meeting for formal declassification and publication (July 2018)

<u>Draft Guidance Document on Good In Vitro Method Practices (GIVIMP) for the Development and</u> <u>Implementation of In Vitro Methods for Regulatory Use in Human Safety Assessment</u>

(28 FEBRUARY 2018)

Collaboration = faster progress

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub #ECVAM

YouTube: **EU Science Hub**

LinkedIn: Joint Research Centre

Facebook: EU Science Hub - Joint Research Centre

sandra.COECKE@ec.europa.eu

